3,304 research outputs found

    Maximum entropy principle for stationary states underpinned by stochastic thermodynamics

    Full text link
    The selection of an equilibrium state by maximising the entropy of a system, subject to certain constraints, is often powerfully motivated as an exercise in logical inference, a procedure where conclusions are reached on the basis of incomplete information. But such a framework can be more compelling if it is underpinned by dynamical arguments, and we show how this can be provided by stochastic thermodynamics, where an explicit link is made between the production of entropy and the stochastic dynamics of a system coupled to an environment. The separation of entropy production into three components allows us to select a stationary state by maximising the change, averaged over all realisations of the motion, in the principal relaxational or nonadiabatic component, equivalent to requiring that this contribution to the entropy production should become time independent for all realisations. We show that this recovers the usual equilibrium probability density function (pdf) for a conservative system in an isothermal environment, as well as the stationary nonequilibrium pdf for a particle confined to a potential under nonisothermal conditions, and a particle subject to a constant nonconservative force under isothermal conditions. The two remaining components of entropy production account for a recently discussed thermodynamic anomaly between over- and underdamped treatments of the dynamics in the nonisothermal stationary state

    Pragmatic trials

    Get PDF
    No abstract available

    Work relations for a system governed by Tsallis statistics

    Full text link
    We derive analogues of the Jarzynski equality and Crooks relation to characterise the nonequilibrium work associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial temperature profile. The stationary state of such an oscillator is described by Tsallis statistics, and the work relations for certain processes may be expressed in terms of q-exponentials. We suggest that these identities might be a feature of nonequilibrium processes in circumstances where Tsallis distributions are found

    Entropy production in full phase space for continuous stochastic dynamics

    Get PDF
    The total entropy production and its three constituent components are described both as fluctuating trajectory-dependent quantities and as averaged contributions in the context of the continuous Markovian dynamics, described by stochastic differential equations with multiplicative noise, of systems with both odd and even coordinates with respect to time reversal, such as dynamics in full phase space. Two of these constituent quantities obey integral fluctuation theorems and are thus rigorously positive in the mean by Jensen's inequality. The third, however, is not and furthermore cannot be uniquely associated with irreversibility arising from relaxation, nor with the breakage of detailed balance brought about by non-equilibrium constraints. The properties of the various contributions to total entropy production are explored through the consideration of two examples: steady state heat conduction due to a temperature gradient, and transitions between stationary states of drift-diffusion on a ring, both in the context of the full phase space dynamics of a single Brownian particle

    Free energy of formation of clusters of sulphuric acid and water molecules determined by guided disassembly

    Full text link
    We evaluate the grand potential of a cluster of two molecular species, equivalent to its free energy of formation from a binary vapour phase, using a nonequilibrium molecular dynamics technique where guide particles, each tethered to a molecule by a harmonic force, move apart to disassemble a cluster into its components. The mechanical work performed in an ensemble of trajectories is analysed using the Jarzynski equality to obtain a free energy of disassembly, a contribution to the cluster grand potential. We study clusters of sulphuric acid and water at 300 K, using a classical interaction scheme, and contrast two modes of guided disassembly. In one, the cluster is broken apart through simple pulling by the guide particles, but we find the trajectories tend to be mechanically irreversible. In the second approach, the guide motion and strength of tethering are modified in a way that prises the cluster apart, a procedure that seems more reversible. We construct a surface representing the cluster grand potential, and identify a critical cluster for droplet nucleation under given vapour conditions. We compare the equilibrium populations of clusters with calculations reported by Henschel et al. [J. Phys. Chem. A 118, 2599 (2014)] based on optimised quantum chemical structures

    A classical reactive potential for molecular clusters of sulphuric acid and water

    Full text link
    We present a two-state empirical valence bond (EVB) potential describing interactions between sulphuric acid and water molecules and designed to model proton transfer between them within a classical dynamical framework. The potential has been developed in order to study the properties of molecular clusters of these species, which are thought to be relevant to atmospheric aerosol nucleation. The particle swarm optimisation method has been used to fit the parameters of the EVB model to density functional theory (DFT) calculations. Features of the parametrised model and DFT data are compared and found to be in satisfactory agreement. In particular, it is found that a single sulphuric acid molecule will donate a proton when clustered with four water molecules at 300 K and that this threshold is temperature dependent
    • …
    corecore